Minggu, 12 Juni 2011

E Colli

Keju

Keju (dipinjam dari bahasa Portugis, queijo) adalah sebuah makanan yang dihasilkan dengan memisahkan zat-zat padat dalam susu melalui proses pengentalan atau koagulasi.[1] Proses pengentalan ini dilakukan dengan bantuan bakteri atau enzim tertentu yang disebut rennet.[1] Hasil dari proses tersebut nantinya akan dikeringkan, diproses, dan diawetkan dengan berbagai macam cara.[1] Dari sebuah susu dapat diproduksi berbagai variasi produk keju.[1] Produk-produk keju bervariasi ditentukan dari tipe susu, metode pengentalan, temperatur, metode pemotongan, pengeringan, pemanasan, juga proses pematangan keju dan pengawetan.[1] Umumnya, hewan yang dijadikan sumber air susu adalah sapi.[2] Air susu unta, kambing, domba, kuda, atau kerbau digunakan pada beberapa tipe keju lokal.[2]
Makanan ini dikenal di seluruh dunia, namun diduga pertama kali dikenal di daerah sekitar Timur Tengah. Meskipun tidak dapat dipastikan kapan keju pertama kali ditemukan, menurut legenda keju pertama kali ditemukan secara tidak sengaja oleh seorang pengembara dari Arab.[2]
Keju memiliki hampir semua kandungan nutrisi pada susu, seperti protein, vitamin, mineral, kalsium, dan fosfor namun juga lemak dan kolesterol yang dapat menyebabkan masalah kesehatan apabila dikonsumsi secara berlebihan.[3] Besaran kandungan lemak dalam keju tergantung pada jenis susu yang digunakan.[3] Keju yang dibuat dengan susu murni atau yang sudah ditambah dengan krim memiliki kandungan lemak, kolesterol dan kalori yang tinggi.[3] Keju sangat bermanfaat karena kaya akan protein, terutama bagi anak kecil karena mereka membutuhkan protein yang lebih banyak dibandingkan orang dewasa.[3]

Asam laktat

Asam laktat
Gambar
Gambar
Identifikasi
Nomor CAS [50-21-5]
Kode ATC
SMILES CC(O)C(=O)O
Sifat
Rumus molekul C3H6O3
Massa molar 90.08 g/mol
Titik leleh L: 53 °C
D: 53 °C
D/L: 16.8 °C
Titik didih 122 °C @ 12 mmHg
Keasaman (pKa) 3.86 at 25 °C
Senyawa terkait
Anion lainnya lactate
asam karboksilat terkait asam asetat
glycolic acid
propionic acid
3-hydroxypropanoic acid
malonic acid
butyric acid
hydroxybutyric acid
Senyawa terkait 1-propanol
2-propanol
propionaldehyde
acrolein
sodium lactate
Kecuali dinyatakan sebaliknya, data di atas berlaku
pada temperatur dan tekanan standar (25°C, 100 kPa)
Sangkalan dan referensi
Asam laktat (Nama IUPAC: asam 2-hidroksipropanoat (CH3-CHOH-COOH), dikenal juga sebagai asam susu) adalah senyawa kimia penting dalam beberapa proses biokimia. Seorang ahli kimia Swedia, Carl Wilhelm Scheele, pertama kali mengisolasinya pada tahun 1780. Secara struktur, ia adalah asam karboksilat dengan satu gugus [hidroksil] yang menempel pada gugus karboksil. Dalam air, ia terlarut lemah dan melepas proton (H+), membentuk ion laktat. Asam ini juga larut dalam alkohol dan bersifat menyerap air (higroskopik).
Asam ini memiliki simetri cermin (kiralitas), dengan dua isomer: asam L-(+)-laktat atau asam (S)-laktat dan, cerminannya, iasam D-(-)-laktat atau asam (R)-laktat. Hanya isomer yang pertama (S) aktif secara biologi.

Bakteri

Bakteri, dari kata Latin bacterium (jamak, bacteria), adalah kelompok besar prokariota, selain Archaea, yang berukuran sangat kecil serta memiliki peran besar dalam kehidupan di bumi.[2] Mereka sangatlah kecil (mikroskopik) dan kebanyakan uniselular (bersel tunggal), dengan struktur sel yang relatif sederhana: tanpa nukleus/inti sel, kerangka sel, dan organel-organel lain seperti mitokondria dan kloroplas.
Bakteri dapat ditemukan di hampir semua tempat: di tanah, air, udara, dalam simbiosis dengan organisme lain maupun sebagai agen parasit (patogen), bahkan dalam tubuh manusia.[3][4][5][6] Pada umumnya, bakteri berukuran 0,5-5 μm, tetapi ada bakteri tertentu yang dapat berdiameter hingga 700 μm, yaitu Thiomargarita.[7] Mereka umumnya memiliki dinding sel, seperti sel tumbuhan dan jamur, tetapi dengan bahan pembentuk sangat berbeda (peptidoglikan).[rujukan?] Beberapa jenis bakteri bersifat motil (mampu bergerak) dan mobilitasnya ini disebabkan oleh flagel.

Mineral

Mineral adalah senyawa alami yang terbentuk melalui proses geologis. Istilah mineral termasuk tidak hanya bahan komposisi kimia tetapi juga struktur mineral. Mineral termasuk dalam komposisi unsur murni dan garam sederhana sampai silikat yang sangat kompleks dengan ribuan bentuk yang diketahui (senyawaan organik biasanya tidak termasuk). Ilmu yang mempelajari mineral disebut mineralogi.

Daftar isi


Klasifikasi dan definisi mineral

Agar dapat diklasifikasikan sebagai mineral sejati, senyawa tersebut haruslah berupa padatan dan memiliki struktur kristal. Senyawa ini juga harus terbentuk secara alami dan memiliki komposisi kimia yang tertentu. Definisi sebelumnya tidak memasukkan senyawa seperti mineral yang berasal dari turunan senyawa organik. Bagaimanapun juga, The International Mineralogical Association tahun 1995 telah mengajukan definisi baru tentang definisi material:
Mineral adalah suatu unsur atau senyawa yang dalam keadaan normalnya memiliki unsur kristal dan terbentuk dari hasil proses geologi.[1]
Klasifikasi modern telah mengikutsertakan kelas organik kedalam daftar mineral, seperti skema klasifikasi yang diajukan oleh Dana dan Strunz.[2][3]

Lactobacillus bulgaricus

Lactobacillus bulgaricus adalah sejenis bakteri yang berperan dalam pembentukan yogurt. Bakteri ini pertama kali diidentifikasikan oleh seorang dokter asal Bulgaria bernama Stamen Grigorov, pada tahun 1905.[1] Oleh karena itu dinamakan menurut Bulgaria.
Bakteri ini hidup dari "memakan" laktosa (gula susu) dan mengeluarkan asam laktat. Asam ini sekaligus mengawetkan susu dan mendegradasi laktosa (gula susu) sehingga orang yang tidak toleran terhadap susu murni dapat mengonsumsi yogurt tanpa mendapat masalah kesehatan.

Laktosa

Laktosa adalah bentuk disakarida dari karbohidrat yang dapat dipecah menjadi bentuk lebih sederhana yaitu galaktosa dan glukosa. Laktosa ada di dalam kandungan susu, dan merupakan 2-8 persen bobot susu keseluruhan.

Pencernaan laktosa

Mamalia yang baru dilahirkan disusui oleh induknya. Air susu ini kaya dengan laktosa. Untuk mencerna air susu digunakan enzim laktase. Enzim ini membelah molekul laktosa menjadi dua bagian: glukosa dan galaktosa, yang kemudian dapat diserap usus.
Pada kebanyakan mamalia produksi enzim pencernaan laktase ini berangsur-angsur menurun seiring dengan semakin bertambahnya umur. Ini juga terjadi pada manusia.Ketidakmampuan mencerna laktosa ini menyebabkan intoleransi laktosa. Orang yang mempunyai masalah intoleransi laktosa tidak boleh mengonsumsi produk makanan dan minuman yang mengandung laktosa.
Banyak orang yang tinggal di Eropa, Timur Tengah, India, dan sebagian Afrika Timur mempertahankan produksi laktase normal sampai masa dewasa. Di banyak daerah ini, susu dari mamalia seperti sapi, kambing, dan biri-biri digunakan sebagai sumber gizi. Karena itu di daerah-daerah tersebutlah gen untuk produksi laktase seumur hidup pertama kali berkembang. Gen toleransi laktosa telah berkembang secara terpisah di berbagai etnis.

Mikroorganisme

Mikroorganisme atau mikroba adalah organisme yang berukuran sangat kecil sehingga untuk mengamatinya diperlukan alat bantuan. [1] Mikroorganisme disebut juga organisme mikroskopik [1]. Mikroorganisme seringkali bersel tunggal (uniseluler) maupun bersel banyak (multiseluler) [1]. Namun, beberapa protista bersel tunggal masih terlihat oleh mata telanjang dan ada beberapa spesies multisel tidak terlihat mata telanjang.[rujukan?] Virus juga termasuk ke dalam mikroorganisme meskipun tidak bersifat seluler [1].

Ilmu yang mempelajari mikroorganisme disebut mikrobiologi [1]. Orang yang bekerja di bidang ini disebut mikrobiolog.[rujukan?]
Mikroorganisme biasanya dianggap mencakup semua prokariota, protista dan alga renik.[rujukan?] Fungi, terutama yang berukuran kecil dan tidak membentuk hifa, dapat pula dianggap sebagai bagiannya meskipun banyak yang tidak menyepakatinya.[rujukan?] Kebanyakan orang beranggapan bahwa yang dapat dianggap mikroorganisme adalah semua organisme sangat kecil yang dapat dibiakkan dalam cawan petri atau inkubator di dalam laboratorium dan mampu memperbanyak diri secara mitosis.[rujukan?]
Mikroorganisme berbeda dengan sel makrooganisme.[rujukan?] Sel makroorganisme tidak bisa hidup bebas di alam melainkan menjadi bagian dari struktur multiselular yang membentuk jaringan, organ, dan sistem organ.[rujukan?] Sementara itu, sebagian besar mikrooganisme dapat menjalankan proses kehidupan dengan mandiri, dapat menghasilkan energi sendiri, dan bereproduksi secara independen tanpa bantuan sel lain [1].

Sterilisasi

Sterilisasi adalah pemusnahan atau eliminasi semua mikroorganisme, termasuk spora bakteri, yang sangat resisten.

Khamir

Khamir adalah fungi ekasel (uniselular) yang beberapa jenis spesiesnya umum digunakan untuk membuat roti, fermentasi minuman beralkohol, dan bahkan digunakan percobaan sel bahan bakar. Kebanyakan khamir merupakan anggota divisi Ascomycota, walaupun ada juga yang digolongkan dalam Basidiomycota. Beberapa jenis khamir, seperti Candida albicans, dapat menyebabkan infeksi pada manusia (kandidiasis).
Lebih dari seribu spesies khamir telah diidentifikasi. Khamir yang paling umum digunakan adalah Saccharomyces cerevisiae, yang dimanfaatkan untuk produksi anggur, roti, tape, dan bir sejak ribuan tahun yang silam dalam bentuk ragi.

Kapang

Kapang (Inggris: mold) merupakan anggota regnum Fungi ("Kerajaan" Jamur) yang biasanya tumbuh pada permukaan makanan yang sudah basi atau terlalu lama tidak diolah. Sebagian besar kapang merupakan anggota dari kelas Ascomycetes.

Protozoa

Protozoa secara umum dapat dijelaskan bahwa protozoa adalah berasal dari bahasa Yunani, yaitu protos artinya pertama dan zoon artinya hewan. Jadi,Protozoa adalah hewan pertama. [1] .Protozoa merupakan kelompok lain protista eukariotik. Kadang-kadang antara algae dan protozoa kurang jelas perbedaannya. Kebanyakan Protozoa hanya dapat dilihat di bawah mikroskop. Beberapa organisme mempunyai sifat antara algae dan protozoa. Sebagai contoh algae hijau Euglenophyta, selnya berflagela dan merupakan sel tunggal yang berklorofil, tetapi dapat mengalami kehilangan klorofil dan kemampuan untuk berfotosintesa. Semua spesies Euglenophyta yang mampu hidup pada nutrien komplek tanpa adanya cahaya, beberapa ilmuwan memasukkannya ke dalam filum protozoa. Contohnya strain mutan algae genus Chlamydomonas yang tidak berklorofil, dapat dimasukkan ke dalam kelas Protozoa genus Polytoma. Hal ini merupakan contoh bagaimana sulitnya membedakan dengan tegas antara algae dan protozoa. Protozoa dibedakan dari prokariot karena ukurannya yang lebih besar, dan selnya eukariotik. Protozoa dibedakan dari algae karena tidak berklorofil, dibedakan dari jamur karena dapat bergerak aktif dan tidak berdinding sel, serta dibedakan dari jamur lendir karena tidak dapat membentuk badan buah. [2]

Virus

Virus adalah parasit berukuran mikroskopik yang menginfeksi sel organisme biologis. Virus hanya dapat bereproduksi di dalam material hidup dengan menginvasi dan memanfaatkan sel makhluk hidup karena virus tidak memiliki perlengkapan selular untuk bereproduksi sendiri. Dalam sel inang, virus merupakan parasit obligat dan di luar inangnya menjadi tak berdaya. Biasanya virus mengandung sejumlah kecil asam nukleat (DNA atau RNA, tetapi tidak kombinasi keduanya) yang diselubungi semacam bahan pelindung yang terdiri atas protein, lipid, glikoprotein, atau kombinasi ketiganya. Genom virus menyandi baik protein yang digunakan untuk memuat bahan genetik maupun protein yang dibutuhkan dalam daur hidupnya.
Istilah virus biasanya merujuk pada partikel-partikel yang menginfeksi sel-sel eukariota (organisme multisel dan banyak jenis organisme sel tunggal), sementara istilah bakteriofag atau fage digunakan untuk jenis yang menyerang jenis-jenis sel prokariota (bakteri dan organisme lain yang tidak berinti sel).
Virus sering diperdebatkan statusnya sebagai makhluk hidup karena ia tidak dapat menjalankan fungsi biologisnya secara bebas. Karena karakteristik khasnya ini virus selalu terasosiasi dengan penyakit tertentu, baik pada manusia (misalnya virus influenza dan HIV), hewan (misalnya virus flu burung), atau tanaman (misalnya virus mosaik tembakau/TMV).

Pasteurisasi

Pasteurisasi adalah sebuah proses pemanasan makanan dengan tujuan membunuh organisme merugikan seperti bakteri, virus, protozoa, kapang, dan khamir. Proses ini diberi nama atas penemunya Louis Pasteur seorang ilmuwan Perancis. Tes pasteurisasi pertama diselesaikan oleh Pasteur dan Claude Bernard pada 20 April 1862.
Tidak seperti sterilisasi, pasteurisasi tidak dimaksudkan untuk membunuh seluruh mikroorganisme di makanan. Bandingkan dengan appertisasi yang diciptakan oleh Nicolas Appert. Pasteurisasi bertjujuan untuk mencapai "pengurangan log" dalam jumlah organisme, mengurangi jumlah mereka sehingga tidak lagi bisa menyebabkan penyakit (dengan syarat produk yang telah dipasteurisasi didinginkan dan digunakan sebelum tanggal kedaluwarsa). Sterilisasi skala komersial makanan masih belum umum, karena dia memengaruhi rasa dan kualitas dari produk.
Produk yang bisa dipasteurisasi

Metabolisme

Metabolisme (bahasa Yunani: μεταβολισμος, metabolismos, perubahan) adalah semua reaksi kimia yang terjadi di dalam organisme, termasuk yang terjadi di tingkat selular.
Secara umum, metabolisme memiliki dua arah lintasan reaksi kimia organik,
Kedua arah lintasan metabolisme diperlukan setiap organisme untuk dapat bertahan hidup. Arah lintasan metabolisme ditentukan oleh suatu senyawa yang disebut sebagai hormon, dan dipercepat (dikatalisis) oleh enzim. Pada senyawa organik, penentu arah reaksi kimia disebut promoter dan penentu percepatan reaksi kimia disebut katalis.
Pada setiap arah metabolisme, reaksi kimiawi melibatkan sejumlah substrat yang bereaksi dengan dikatalisis enzim pada jenjang-jenjang reaksi guna menghasilkan senyawa intermediat, yang merupakan substrat pada jenjang reaksi berikutnya. Keseluruhan pereaksi kimia yang terlibat pada suatu jenjang reaksi disebut metabolom. Semua ini dipelajari pada suatu cabang ilmu biologi yang disebut

Antioksidan

Antioksidan merupakan zat yang mampu memperlambat atau mencegah proses oksidasi.[1]
Zat ini secara nyata mampu memperlambat atau menghambat oksidasi zat yang mudah teroksidasi meskipun dalam konsentrasi rendah.[2] Antioksidan juga sesuai didefinisikan sebagai senyawa-senyawa yang melindungi sel dari efek berbahaya radikal bebas oksigen reaktif jika berkaitan dengan penyakit, radikal bebas ini dapat berasal dari metabolisme tubuh maupun faktor eksternal lainnya.[2] Radikal bebas adalah spesies yang tidak stabil karena memiliki elektron yang tidak berpasangan dan mencari pasangan elektron dalam makromolekul biologi.[rujukan?] Protein lipida dan DNA dari sel manusia yang sehat merupakan sumber pasangan elektron yang baik.[rujukan?] Kondisi oksidasi dapat menyebabkan kerusakan protein dan DNA, kanker, penuaan, dan penyakit lainnya.[3] Komponen kimia yang berperan sebagai antioksidan adalah senyawa golongan fenolik dan polifenolik.[rujukan?] Senyawa-senyawa golongan tersebut banyak terdapat dialam, terutama pada tumbuh-tumbuhan, dan memiliki kemampuan untuk menangkap radikal bebas.[4] Antioksidan yang banyak ditemukan pada bahan pangan, antara lain vitamin E, vitamin C, dan karotenoid.[2]

Sinar-X

Sinar-X atau sinar Röntgen adalah salah satu bentuk dari radiasi elektromagnetik dengan panjang gelombang berkisar antara 10 nanometer ke 100 pikometer (mirip dengan frekuensi dalam jangka 30 PHz to 60 EHz). Sinar-X umumnya digunakan dalam diagnosis gambar medis dan Kristalografi sinar-X. Sinar-X adalah bentuk dari radiasi ion dan dapat berbahaya.

Radiasi elektromagnetik

Radiasi elektromagnetik adalah kombinasi medan listrik dan medan magnet yang berosilasi dan merambat lewat ruang dan membawa energi dari satu tempat ke tempat yang lain. Cahaya tampak adalah salah satu bentuk radiasi elektromagnetik. Penelitian teoritis tentang radiasi elektromagnetik disebut elektrodinamik, sub-bidang elektromagnetisme.
Gelombang elektromagnetik ditemukan oleh Heinrich Hertz. Gelombang elektromagnetik termasuk gelombang transversal.
Setiap muatan listrik yang memiliki percepatan memancarkan radiasi elektromagnetik. Waktu kawat (atau panghantar seperti antena) menghantarkan arus bolak-balik, radiasi elektromagnetik dirambatkan pada frekuensi yang sama dengan arus listrik. Bergantung pada situasi, gelombang elektromagnetik dapat bersifat seperti gelombang atau seperti partikel. Sebagai gelombang, dicirikan oleh kecepatan (kecepatan cahaya), panjang gelombang, dan frekuensi. Kalau dipertimbangkan sebagai partikel, mereka diketahui sebagai foton, dan masing-masing mempunyai energi berhubungan dengan frekuensi gelombang ditunjukan oleh hubungan Planck E = Hf, di mana E adalah energi foton, h ialah konstanta Planck — 6.626 × 10 −34 J·s — dan f adalah frekuensi gelombang.
Einstein kemudian memperbarui rumus ini menjadi Ephoton = hf.

Stres

Stres adalah suatu kondisi anda yang dinamis saat seorang individu dihadapkan pada peluang, tuntutan, atau sumber daya yang terkait dengan apa yang dihasratkan oleh individu itu dan yang hasilnya dipandang tidak pasti dan penting.[1] Stress adalah beban rohani yang melebihi kemampuan maksimum rohani itu sendiri, sehingga perbuatan kurang terkontrol secara sehat. (ref:edy64).
Stres tidak selalu buruk, walaupun biasanya dibahas dalam konteks negatif, karena stres memiliki nilai positif ketika menjadi peluang saat menawarkan potensi hasil.[2] Sebagai contoh, banyak profesional memandang tekanan berupa beban kerja yang berat dan tenggat waktu yang mepet sebagai tantangan positif yang menaikkan mutu pekerjaan mereka dan kepuasan yang mereka dapatkan dari pekerjaan mereka. [2].
Stres bisa positif dan bisa negatif.[2] Para peneliti berpendapat bahwa stres tantangan, atau stres yang menyertai tantangan di lingkungan kerja, beroperasi sangat berbeda dari stres hambatan, atau stres yang menghalangi dalam mencapai tujuan.[3] Meskipun riset mengenai stres tantangan dan stres hambatan baru tahap permulaan, bukti awal menunjukan bahwa stres tantangan memiliki banyak implikasi yang lebih sedikit negatifnya dibanding stres hambatan.[3]

Biokimia

Biokimia adalah kimia mahluk hidup. Biokimiawan mempelajari molekul dan reaksi kimia terkatalisis oleh enzim yang berlangsung dalam semua organisme. Lihat artikel biologi molekular untuk diagram dan deskripsi hubungan antara biokimia, biologi molekular, dan genetika.
Biokimia merupakan ilmu yang mempelajari struktur dan fungsi komponen selular, seperti protein, karbohidrat, lipid, asam nukleat, dan biomolekul lainnya. Saat ini biokimia lebih terfokus secara khusus pada kimia reaksi termediasi enzim dan sifat-sifat protein.
Saat ini, biokimia metabolisme sel telah banyak dipelajari. Bidang lain dalam biokimia di antaranya sandi genetik (DNA, RNA), sintesis protein, angkutan membran sel, dan transduksi sinyal.



[sunting] Perkembangan biokimia

Kebangkitan biokimia diawali dengan penemuan pertama molekul enzim, diastase, pada tahun 1833 oleh Anselme Payen. Tahun 1828, Friedrich Wöhler menerbitkan sebuah buku tentang sintesis urea, yang membuktikan bahwa senyawa organik dapat dibuat secara mandiri. Penemuan ini bertolak belakang dengan pemahaman umum pada waktu itu yang meyakini bahwa senyawa organik hanya bisa dibuat oleh organisme. Istilah biokimia pertama kali dikemukakan pada tahun 1903 oleh Karl Neuber, seorang kimiawan Jerman. Sejak saat itu, biokimia semakin berkembang, terutama sejak pertengahan abad ke-20, dengan ditemukannya teknik-teknik baru seperti kromatografi, difraksi sinar X, elektroforesis, RMI (nuclear magnetic resonance, NMR), pelabelan radioisotop, mikroskop elektron, dan simulasi dinamika molekular. Teknik-teknik ini memungkinkan penemuan dan analisis yang lebih mendalam berbagai molekul dan jalur metabolik sel, seperti glikolisis dan siklus Krebs. Perkembangan ilmu baru seperti bioinformatika juga banyak membantu dalam peramalan dan pemodelan struktur molekul raksasa.
Saat ini, penemuan-penemuan biokimia digunakan di berbagai bidang, mulai dari genetika hingga biologi molekular dan dari pertanian hingga kedokteran. Penerapan biokimia yang pertama kali barangkali adalah dalam pembuatan roti menggunakan khamir, sekitar 5000 tahun yang lalu.

Subdisiplin

Biokimia secara prinsip merupakan kimia zat-zat yang bisa digolongkan ke dalam beberapa kategori utama:

Darah

Darah adalah cairan yang terdapat pada semua makhluk hidup(kecuali tumbuhan) tingkat tinggi yang berfungsi mengirimkan zat-zat dan oksigen yang dibutuhkan oleh jaringan tubuh, mengangkut bahan-bahan kimia hasil metabolisme, dan juga sebagai pertahanan tubuh terhadap virus atau bakteri. Istilah medis yang berkaitan dengan darah diawali dengan kata hemo- atau hemato- yang berasal dari bahasa Yunani haima yang berarti darah.
Pada serangga, darah (atau lebih dikenal sebagai hemolimfe) tidak terlibat dalam peredaran oksigen. Oksigen pada serangga diedarkan melalui sistem trakea berupa saluran-saluran yang menyalurkan udara secara langsung ke jaringan tubuh. Darah serangga mengangkut zat ke jaringan tubuh dan menyingkirkan bahan sisa metabolisme.
Pada hewan lain, fungsi utama darah ialah mengangkut oksigen dari paru-paru atau insang ke jaringan tubuh. Dalam darah terkandung hemoglobin yang berfungsi sebagai pengikat oksigen. Pada sebagian hewan tak bertulang belakang atau invertebrata yang berukuran kecil, oksigen langsung meresap ke dalam plasma darah karena protein pembawa oksigennya terlarut secara bebas. Hemoglobin merupakan protein pengangkut oksigen paling efektif dan terdapat pada hewan-hewan bertulang belakang atau vertebrata. Hemosianin, yang berwarna biru, mengandung tembaga, dan digunakan oleh hewan crustaceae. Cumi-cumi menggunakan vanadium kromagen (berwarna hijau muda, biru, atau kuning oranye).

Steroid

Steroid adalah senyawa organik lemak sterol tidak terhidrolisis yang dapat dihasil reaksi penurunan dari terpena atau skualena. Steroid merupakan kelompok senyawa yang penting dengan struktur dasar sterana jenuh[1] (bahasa Inggris: saturated tetracyclic hydrocarbon : 1,2-cyclopentanoperhydrophenanthrene) dengan 17 atom karbon dan 4 cincin.[2] Senyawa yang termasuk turunan steroid, misalnya kolesterol, ergosterol, progesteron, dan estrogen. Pada umunya steroid berfungsi sebagai hormon. Steroid mempunyai struktur dasar yang terdiri dari 17 atom karbon yang membentuk tiga cincin sikloheksana dan satu cincin siklopentana. Perbedaan jenis steroid yang satu dengan steroid yang lain terletak pada gugus fungsional yang diikat oleh ke-empat cincin ini dan tahap oksidasi tiap-tiap cincin.
Lemak sterol adalah bentuk khusus dari steroid dengan rumus bangun diturunkan dari kolestana dilengkapi gugus hidroksil pada atom C-3[3], banyak ditemukan pada tanaman, hewan dan fungsi. Semua steroid dibuat di dalam sel dengan bahan baku berupa lemak sterol, baik berupa lanosterol pada hewan atau fungsi, maupun berupa sikloartenol pada tumbuhan. Kedua jenis lemak sterol di atas terbuat dari siklisasi squalena dari triterpena.[4] Kolesterol adalah jenis lain lemak sterol yang umum dijumpai.
Beberapa steroid bersifat anabolik, antara lain testosteron, metandienon, nandrolon dekanoat, 4-androstena-3 17-dion. Steroid anabolik dapat mengakibatkan sejumlah efek samping yang berbahaya, seperti menurunkan rasio lipoprotein densitas tinggi, yang berguna bagi jantung, menurunkan rasio lipoprotein densitas rendah, stimulasi tumor prostat, kelainan koagulasi dan gangguan hati, kebotakan, menebalnya rambut, tumbuhnya jerawat dan timbulnya payudara pada pria. Secara fisiologi, steroid anabolik dapat membuat seseorang menjadi agresif.[5]

[sunting] Biosintesis

MVAPathwayfromAcCoAtoIsoprene.JPG
FPPtoLanosterolPathway.JPG
[6]Steroid adalah salah satu bentuk triterpena termodifikasi, sehingga unit penyusunnya adalah isoprena, yaitu IPP dan DMAPP. IPP dan DMAPP dibiosintesis oleh tubuh dari Asetil Koenzim A, suatu C-2 hasil pelepasan CO2 oleh piruvat pada jalur metabolisme, lewat jalur asam mevalonat atau deoksisilulosa fosfat
Unit – Unit IPP dan DMAPP bereaksi memanjangkan rantai membentuk C-15, disebut farnesil. Dua FPP (Farnesil Pirofosfat) bergabung ekor-ekor membentuk skualena. Skualena teroksidasi membentuk epoksida, memungkinkan terjadinya siklisasi membentuk lanosterol

Glukosa

Glukosa, suatu gula monosakarida, adalah salah satu karbohidrat terpenting yang digunakan sebagai sumber tenaga bagi hewan dan tumbuhan. Glukosa merupakan salah satu hasil utama fotosintesis dan awal bagi respirasi. Bentuk alami (D-glukosa) disebut juga dekstrosa, terutama pada industri pangan.
Gambaran proyeksi Haworth struktur glukosa (α-D-glukopiranosa)
Glukosa (C6H12O6, berat molekul 180.18) adalah heksosa—monosakarida yang mengandung enam atom karbon. Glukosa merupakan aldehida (mengandung gugus -CHO). Lima karbon dan satu oksigennya membentuk cincin yang disebut "cincin piranosa", bentuk paling stabil untuk aldosa berkabon enam. Dalam cincin ini, tiap karbon terikat pada gugus samping hidroksil dan hidrogen kecuali atom kelimanya, yang terikat pada atom karbon keenam di luar cincin, membentuk suatu gugus CH2OH. Struktur cincin ini berada dalam kesetimbangan dengan bentuk yang lebih reaktif, yang proporsinya 0.0026% pada pH 7.
Glukosa merupakan sumber tenaga yang terdapat di mana-mana dalam biologi. Kita dapat menduga alasan mengapa glukosa, dan bukan monosakarida lain seperti fruktosa, begitu banyak digunakan. Glukosa dapat dibentuk dari formaldehida pada keadaan abiotik, sehingga akan mudah tersedia bagi sistem biokimia primitif. Hal yang lebih penting bagi organisme tingkat atas adalah kecenderungan glukosa, dibandingkan dengan gula heksosa lainnya, yang tidak mudah bereaksi secara nonspesifik dengan gugus amino suatu protein. Reaksi ini (glikosilasi) mereduksi atau bahkan merusak fungsi berbagai enzim. Rendahnya laju glikosilasi ini dikarenakan glukosa yang kebanyakan berada dalam isomer siklik yang kurang reaktif. Meski begitu, komplikasi akut seperti diabetes, kebutaan, gagal ginjal, dan kerusakan saraf periferal (‘’peripheral neuropathy’’), kemungkinan disebabkan oleh glikosilasi protein.
Bentuk rantai D-Glukosa.
Dalam respirasi, melalui serangkaian reaksi terkatalisis enzim, glukosa teroksidasi hingga akhirnya membentuk karbon dioksida dan air, menghasilkan energi, terutama dalam bentuk ATP. Sebelum digunakan, glukosa dipecah dari polisakarida.
Glukosa dan fruktosa diikat secara kimiawi menjadi sukrosa. Pati, selulosa, dan glikogen merupakan polimer glukosa umum polisakarida).
Dekstrosa terbentuk akibat larutan D-glukosa berotasi terpolarisasi cahaya ke kanan. Dalam kasus yang sama D-fruktosa disebut "levulosa" karena larutan levulosa berotasi terpolarisasi cahaya ke kiri.

Insulin

Insulin (bahasa Latin insula, "pulau", karena diproduksi di Pulau-pulau Langerhans di pankreas) adalah sebuah hormon polipeptida yang mengatur metabolisme karbohidrat. Selain merupakan "efektor" utama dalam homeostasis karbohidrat, hormon ini juga ambil bagian dalam metabolisme lemak (trigliserida) dan protein – hormon ini memiliki properti anabolik. Hormon tersebut juga memengaruhi jaringan tubuh lainnya.
Insulin menyebabkan sel (biologi) pada otot dan adiposit menyerap glukosa dari sirkulasi darah melalui transporter glukosa GLUT1 dan GLUT4[1] dan menyimpannya sebagai glikogen di dalam hati dan otot sebagai sumber energi.
Kadar insulin yang rendah akan mengurangi penyerapan glukosa dan tubuh akan mulai menggunakan lemak sebagai sumber energi.
Insulin digunakan dalam pengobatan beberapa jenis diabetes mellitus. Pasien dengan diabetes mellitus tipe 1 bergantung pada insulin eksogen (disuntikkan ke bawah kulit/subkutan) untuk keselamatannya karena kekurangan absolut hormon tersebut; pasien dengan diabetes mellitus tipe 2 memiliki tingkat produksi insulin rendah atau kebal insulin, dan kadang kala membutuhkan pengaturan insulin bila pengobatan lain tidak cukup untuk mengatur kadar glukosa darah.

Difusi

Difusi adalah peristiwa mengalirnya/berpindahnya suatu zat dalam pelarut dari bagian berkonsentrasi tinggi ke bagian yang berkonsentrasi rendah. Perbedaan konsentrasi yang ada pada dua larutan disebut gradien konsentrasi. Difusi akan terus terjadi hingga seluruh partikel tersebar luas secara merata atau mencapai keadaan kesetimbangan dimana perpindahan molekul tetap terjadi walaupun tidak ada perbedaan konsentrasi. Contoh yang sederhana adalah pemberian gula pada cairan teh tawar. Lambat laun cairan menjadi manis. Contoh lain adalah uap air dari cerek yang berdifusi dalam udara.Difusi yang paling sering terjadi adalah difusi molekuler. Difusi ini terjadi jika terbentuk perpindahan dari sebuah lapisan (layer) molekul yang diam dari solid atau fluida.
Ada beberapa faktor yang memengaruhi kecepatan difusi, yaitu:[1]
  • Ukuran partikel. Semakin kecil ukuran partikel, semakin cepat partikel itu akan bergerak, sehinggak kecepatan difusi semakin tinggi.
  • Ketebalan membran. Semakin tebal membran, semakin lambat kecepatan difusi.
  • Luas suatu area. Semakin besar luas area, semakin cepat kecepatan difusinya.
  • Jarak. Semakin besar jarak antara dua konsentrasi, semakin lambat kecepatan difusinya.
  • Suhu. Semakin tinggi suhu, partikel mendapatkan energi untuk bergerak dengan lebih cepat. Maka, semakin cepat pula kecepatan difusinya.[2]

Difusi dan biologi

Dalam mengambil zat-zat nutrisi yang penting dan mengeluarkan zat-zat yang tidak diperlukan, sel melakukan berbagai jenis aktivitas, dan salah satunya adalah difusi. Ada dua jenis difusi yang dilakukan, yaitu difusi biasa dan difusi khusus.
Difusi biasa terjadi ketika sel ingin mengambil nutrisi atau molekul yang hydrophobic atau tidak berpolar / berkutub. Molekul dapat langsung berdifusi ke dalam membran plasma yang terbuat dari phospholipids. Difusi seperti ini tidak memerlukan energi atau ATP [Adenosine Tri-Phosphate].
Difusi khusus terjadi ketika sel ingin mengambil nutrisi atau molekul yang hydrophilic atau berpolar dan ion. Difusi seperti ini memerlukan protein khusus yang memberikan jalur kepada partikel-partikel tersebut ataupun membantu dalam perpindahan partikel. Hal ini dilakukan karena partikel-partikel tersebut tidak dapat melewati membran plasma dengan mudah. Protein-protein yang turut campur dalam difusi khusus ini biasanya berfungsi untuk spesifik partikel.

Hipotalamus

Hipotalamus (bahasa Inggris: hypothalamus) adalah bagian dari otak yang terdiri dari sejumlah nukleus dengan berbagai fungsi yang sangat peka terhadap steroid dan glukokortikoid, glukosa dan suhu. Salah satu di antara fungsi hipotalamus yang paling penting karena terhubung dengan sistem syaraf dan kelenjar hipofisis yang merupakan salah satu homeostasis sistem endokrin, adalah fungsi neuroendokrin yang berpengaruh terhadap sistem syaraf otonomi sehingga dapat memelihara homeostasis tekanan darah, denyut jantung, suhu tubuh dan perilaku konsumsi[1] dan emosi.
Hipotalamus juga merupakan bagian yang tidak terpisahkan dari sistem limfatik, dan merupakan konektor sinyal dari berbagai bagian otak menuju ke korteks otak besar. Akson dari berbagai sistem indera berakhir pada hipotalamus (kecuali sistem olfaction) sebelum informasi tersebut diteruskan ke korteks otak besar.[2] Hipotalamus berfungsi sebagai monitoring dan mengontrol berbagai aktivitas dari tubuh yang sangat banyak.

Hipotalamus mengirim suatu signal ke kelenjar adrenal yaitu epinephrine dan neropinephrine. Sekresi yang lain berupa:

Sel

Sel merupakan unit organisasi terkecil yang menjadi dasar kehidupan dalam arti biologis. Semua fungsi kehidupan diatur dan berlangsung di dalam sel. Oleh karena itu, sel dapat berfungsi secara autonom asalkan seluruh kebutuhan hidupnya terpenuhi.
Semua organisme selular terbagi ke dalam dua golongan besar berdasarkan arsitektur basal dari selnya, yaitu organisme prokariota dan organisme eukariota.[1]
Organisme prokariota tidak memiliki inti sel dan mempunyai organisasi internal sel yang relatif lebih sederhana. Prokariota terbagi menjadi dua kelompok yang besar: eubakteria yang meliputi hampir seluruh jenis bakteri, dan archaea, kelompok prokariota yang sangat mirip dengan bakteri dan berkembang-biak di lingkungan yang ekstrem seperti sumber air panas yang bersifat asam atau air yang mengandung kadar garam yang sangat tinggi. Genom prokariota terdiri dari kromosom tunggal yang melingkar, tanpa organisasi DNA.
Organisme eukariota memiliki organisasi intraselular yang jauh lebih kompleks, antara lain dengan membran internal, organel yang memiliki membran tersendiri seperti inti sel dan sitoskeleton yang sangat terstruktur. Sel eukariota memiliki beberapa kromosom linear di dalam nuklei, di dalamnya terdapat sederet molekul DNA yang sangat panjang yang terbagi dalam paket-paket yang dipisahkan oleh histon dan protein yang lain.
Jika panjang DNA diberi notasi C dan jumlah kromosom dalam genom diberi notasi n, maka notasi 2nC menunjukkan genom sel diploid, 1nC menunjukkan genom sel haploid, 3nC menunjukkan genom sel triploid, 4nC menunjukkan genom sel tetraploid. Pada manusia, C = 3,5 × 10-12 g, dengan n = 23, sehingga genom manusia dirumuskan menjadi 2 x 23 x 3,5 × 10-12, karena sel eukariota manusia memiliki genom diploid.
Sejenis sel diploid yaitu sel nutfah dapat terdiferensiasi menjadi sel gamet haploid. Genom sel gamet pada manusia memiliki 23 kromosom, 22 diantaranya merupakan otosom, sisanya merupakan kromosom genital. Pada oosit, kromosom genital senantiasa memiliki notasi X, sedangkan pada spermatosit, kromosom dapat berupa X maupun Y. Setelah terjadi fertilisasi antara kedua sel gamet yang berbeda kromosom genitalnya, terbentuklah sebuah zigot diploid. Notasi genom yang digunakan untuk zigot adalah 46,XX atau 46,XY.
Pada umumnya sel somatik merupakan sel diploid, namun terdapat beberapa perkecualian, antara lain: sel darah merah dan keratinosit memiliki genom nuliploid. Hepatosit bergenom tetraploid 4nC, sedang megakariosit pada sumsum tulang belakang memiliki genom poliploid hingga 8nC, 16nC atau 32nC dan dapat melakukan proliferasi hingga menghasilkan ribuan sel nuliploid. Banyaknya ploidi pada sel terjadi sebagai akibat dari replikasi DNA yang tidak disertai pembelahan sel, yang lazim disebut sebagai endomitosis.